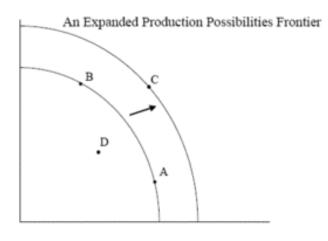
Energy: Industrialism and the Rise of the Masses

- I. Capital and Labor
- II. What Power?
- III. Impact
- IV. Sex, Society and Culture

Capital and Labor: An Economics Lesson

- **❖** Historical Discontinuity: Real or Illusionary?
- ❖ Productions Functions: Q = F (L, K)
 - **❖** Definitions of Capital and Labor
 - **❖** Short term vs. Long term
- **❖** Production Possibilities Frontier (PPF) and its shifts
 - ❖ The Effects of Technology
 - **❖** Specialization and Mechanization
- **❖** A Modern Example:


Building Mirrors for Large Optical Telescopes

- 1948- Hale Observatory (5 meters)
- 1976- Soviet Infamous (6 meter) telescope fiascoWhat went wrong?
- 1982- Dr. Jerry Nelson and his elegant solution
- 2016(?)- Very Large European Telescope Array (42 meters)

Output 1

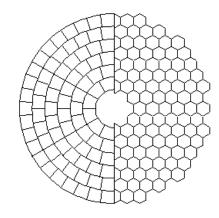


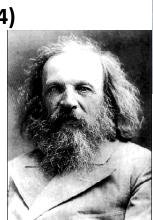
Figure 1 Notional geometries for a large telescope primary mirror, composed of hexagonal segments or sector-shaped segments.

Topics in 19th Century Science

I. Chemistry:

❖What came before: Phlogiston Theory

❖ Antoine Lavoisier (1743-1794):

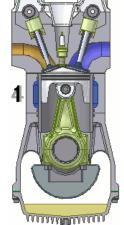

- **❖** Isolated the composition of water and air
- **❖** Stoichiometry & the formulation the law of conservation of Mass
- **❖** "What do you call twenty eight bureaucrats in chains?" (1794)

❖ Dimitri Mendeleev (1834-1907):

- **❖** Weight-ing for Valences: Creation of the Periodic table
- **❖** Hypothesis on the Aether
- **❖Introduction of the Metric system to Russia**

❖ Marie Sklodowska-Curie (1867-1934):

- **❖** Discovery of Radioactivity
 - **❖**What the hell is radioactivity?
- **❖Two New Elements: Polonium & Radium**
 - **❖** Applications of Radioactive elements: Medical & X-rays
- **❖Nobel Prize & Philanthropy (1903)**
- ❖Illness and Death (4 July 1642)


Topics in 19th Century Science

II. Thermodynamics & Heat Engines:

- **❖**What came before: Heat as a fluid
- **❖Statistical Mechanics & Ludwig Boltzmann (1844-1906)**
- **❖** Laws of Thermodynamics
 - 1. Zeroth Law: If A, B, and C are in tact with each other, then if A and C have the same temperature, A and B will have the same temperature.
 - 2. First Law: Energy can be transformed (changed from one form to another), but it can neither be created nor destroyed
 - **3. Second Law:** Without outside intervention, heat generally cannot spontaneously flow from a material at lower temperature to a material at higher temperature.
 - **4. Third Law:** As a system approaches absolute zero, all processes cease and the entropy of the system approaches a minimum value
- **❖** Heat Engines: Driving force of the industrial revolution
 - **❖** Making things go boom for fun and profit
 - ❖ Principle of a heat engine
 - **❖** Sadi Carnot (1796-1832)
 - **❖** Applications, Productivity, and Efficiency

Topics in 19th Century Science

III. <u>Electricity</u>:

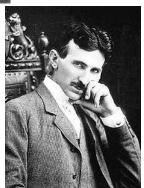
- **❖** What came before: Leyden Jars, Kites, and Fluids. Oh, my!
- **\$** Basis of electricity: Plusses and Minuses
- **Michael Faraday (1791-1867):**
 - Electromagnetic Induction
- J. J. Thompson (1856-1940):
 - Cathode Rays and Electrons
 - The Plum Pudding/ Chocolate Chip Cookie Model
 - A Look Ahead: Television sets
- Heinrich Hertz (1857-1894)
- **❖** James Clark Maxwell (1831-1879) and his equations:

$$\oint \mathbf{E} \cdot d\mathbf{A} = q / \varepsilon_{0}$$

$$\oint \mathbf{B} \cdot d\mathbf{A} = 0$$

$$\oint \mathbf{E} \cdot d\mathbf{S} = -d\Phi_{\mathbf{B}} / dt$$

$$\oint \mathbf{B} \cdot d\mathbf{S} = \mu_{0}i + \mu_{0}\varepsilon_{0}d\Phi_{\mathbf{E}} / dt$$


- An uneasy answer to a nagging question
- Practical Applications:
 - The AC /DC (Not the band) debate & dynamos
 - Thomas Edision and Nikola Tesla (1856-1943)
 - * Radios (1896), Telegraph (1875), and Telephones (1876)

